求证1/(2*3)+1/(3*5)+1/(4*7)+...+1/((n+1)(2n+1))

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 16:11:10
求证1/(2*3)+1/(3*5)+1/(4*7)+...+1/((n+1)(2n+1))

求证1/(2*3)+1/(3*5)+1/(4*7)+...+1/((n+1)(2n+1))
求证1/(2*3)+1/(3*5)+1/(4*7)+...+1/((n+1)(2n+1))

求证1/(2*3)+1/(3*5)+1/(4*7)+...+1/((n+1)(2n+1))
1/(2*3)+1/(3*5)+1/(4*7)+...+1/[(n+1)(2n+1)]
= 1/6 + 1/(3*5)+1/(4*7)+...+1/[(n+1)(2n+1)]
= 1/6 + 1/2 * {1/(3*2.5)++1/(4*3.5)+...+1/[(n+1)(n+0.5)] }
< 1/6 + 1/2 * {1/(3.25*2.25)+1/(4.25*3.25)+...+1/[(n+1.25)(n+0.25)] }
= 1/6 + 1/2 * { (1/2.25 - 1/3.25) + (1/3.25 - 1/4.25) + ...+ [1/(n+0.25) - 1/(n+1.25)] }
= 1/6 + 1/2 * { 1/2.25 - 1/(n+1.25)] }
= 1/6 + 1/4.5 - 1/(2n+2.5)
< 1/6 + 1/4.5
= 3/18 + 4/18
= 7/18
< 5/12

第一个因式,分解成为1/2-1/3,第二个分解成1/3-1/5,然后以此类推 到最后 化简就是1/(n+1)-1/(2n+1),然后自己求和做差 就可以了

证明:
方法很多,这里用放缩法:
令an=n+1,bn=2n+1,则:
1/[a(n)*b(n)]=1/[(n+1)(2n+1)]
=2 * {[2n+2)-(2n+1)]/[(2n+2)(2n+1)]}
=2 * [1/(2n+1) - 1/(2n+2)]
<1/2(1/n-1/n+1)
因此:
从第二项开始放缩,则:
原式...

全部展开

证明:
方法很多,这里用放缩法:
令an=n+1,bn=2n+1,则:
1/[a(n)*b(n)]=1/[(n+1)(2n+1)]
=2 * {[2n+2)-(2n+1)]/[(2n+2)(2n+1)]}
=2 * [1/(2n+1) - 1/(2n+2)]
<1/2(1/n-1/n+1)
因此:
从第二项开始放缩,则:
原式<
1/6+[(1/2-1/3)/2+(1/3-1/4)/2+……+(1/n-1/(n+1))/2]
=1/6+(1/2)*[1/2-1/3+1/3-1/4+....+1/n-1/(n+1)]
=1/6+(1/2)*[1/2-1/(n+1)]
=1/6+1/4-1/(2(n+1))
<1/6+1/4=5/12

收起