设f(x)在[a,b]上连续,在(a,b)可导且f'(x)小于等于0,F(x)=(1/x-a)∫[0-->x]f(t)dt,证明:在(a,b)内有F'(x)小于等于零

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 12:33:17
设f(x)在[a,b]上连续,在(a,b)可导且f'(x)小于等于0,F(x)=(1/x-a)∫[0-->x]f(t)dt,证明:在(a,b)内有F'(x)小于等于零

设f(x)在[a,b]上连续,在(a,b)可导且f'(x)小于等于0,F(x)=(1/x-a)∫[0-->x]f(t)dt,证明:在(a,b)内有F'(x)小于等于零
设f(x)在[a,b]上连续,在(a,b)可导且f'(x)小于等于0,F(x)=(1/x-a)∫[0-->x]f(t)dt,证明:
在(a,b)内有F'(x)小于等于零

设f(x)在[a,b]上连续,在(a,b)可导且f'(x)小于等于0,F(x)=(1/x-a)∫[0-->x]f(t)dt,证明:在(a,b)内有F'(x)小于等于零
题错了吧?积分下限应该是a
F'(x)=[(x-a)f(x)-∫[a-->x]f(t)dt]/(x-a)²
=[(x-a)f(x)-∫[a-->x]f(t)dt]/(x-a)²
由积分中值定理:存在ξ∈(a,x),使得 ∫[a-->x]f(t)dt=f(ξ)(x-a)
=[(x-a)f(x)-(x-a)f(ξ)]/(x-a)²
=[f(x)-f(ξ)]/(x-a)
由于x>a,x>ξ>a,f '(x)≤0,则f(x)为减函数,因此 f(x)≤f(ξ)
因此F'(x)≤0